We consider the framework of non-stationary Online Convex Optimization where a learner seeks to control its dynamic regret against an arbitrary sequence of comparators. When the loss functions are strongly convex or exp-concave, we demonstrate that Strongly Adaptive (SA) algorithms can be viewed as a principled way of controlling dynamic regret in terms of path variation $V_T$ of the comparator sequence. Specifically, we show that SA algorithms enjoy $\tilde O(\sqrt{TV_T} \vee \log T)$ and $\tilde O(\sqrt{dTV_T} \vee d\log T)$ dynamic regret for strongly convex and exp-concave losses respectively without apriori knowledge of $V_T$. The versatility of the principled approach is further demonstrated by the novel results in the setting of learning against bounded linear predictors and online regression with Gaussian kernels. Under a related setting, the second component of the paper addresses an open question posed by Zhdanov and Kalnishkan (2010) that concerns online kernel regression with squared error losses. We derive a new lower bound on a certain penalized regret which establishes the near minimax optimality of online Kernel Ridge Regression (KRR). Our lower bound can be viewed as an RKHS extension to the lower bound derived in Vovk (2001) for online linear regression in finite dimensions.
翻译:我们考虑的是非静止在线 Convex优化框架, 学习者在该框架中试图控制其动态遗憾, 以对抗任意的参照者顺序。 当损失功能是强烈的 convex 或 exp- concave 时, 我们证明强适应(SA) 算法可以被视为控制动态遗憾的原则性方法, 其路径变换为参照者序列的美元V_ T$。 具体地说, 我们显示SA 算法享有美元( sqrt{TV_ T}\vee\log T) 和 $\ tdelde O( sqrt{dTV_ T}\vee d\log T) 和 $\ telde O( sqqrt{dTV_ T) 和 veeqlog) 。 当损失的强烈 contreadivex 和 Excreadivecreadive( Qral) 分别是强烈的 和 Kalnal- legreal relational, 包括我们内部的下级的下级 。