The rapidly expanding number of Internet of Things (IoT) devices is generating huge quantities of data, but the data privacy and security exposure in IoT devices, especially in the automatic driving system. Federated learning (FL) is a paradigm that addresses data privacy, security, access rights, and access to heterogeneous message issues by integrating a global model based on distributed nodes. However, data poisoning attacks on FL can undermine the benefits, destroying the global model's availability and disrupting model training. To avoid the above issues, we build up a hierarchical defense data poisoning (HDDP) system framework to defend against data poisoning attacks in FL, which monitors each local model of individual nodes via abnormal detection to remove the malicious clients. Whether the poisoning defense server has a trusted test dataset, we design the \underline{l}ocal \underline{m}odel \underline{t}est \underline{v}oting (LMTV) and \underline{k}ullback-\underline{l}eibler divergence \underline{a}nomaly parameters \underline{d}etection (KLAD) algorithms to defend against label-flipping poisoning attacks. Specifically, the trusted test dataset is utilized to obtain the evaluation results for each classification to recognize the malicious clients in LMTV. More importantly, we adopt the kullback leibler divergence to measure the similarity between local models without the trusted test dataset in KLAD. Finally, through extensive evaluations and against the various label-flipping poisoning attacks, LMTV and KLAD algorithms could achieve the $100\%$ and $40\%$ to $85\%$ successful defense ratios under different detection situations.
翻译:正在迅速扩大的Tings Internet(IoT)设备数量正在生成大量数据,但数据隐私和安全暴露在 IoT 设备中,特别是在自动驱动系统中,数据隐私和安全暴露正在产生大量数据。 Federal 学习(FL) 是一个范例,它涉及数据隐私、安全、访问权以及基于分布式节点的全球模型,从而解决数据共享问题。 但是,对 FL 的数据中毒袭击可能会破坏效益,破坏全球模型的可用性并破坏模式培训。 为避免上述问题,我们建立了一个等级防御数据中毒(HDDP)系统框架,以防范FLT设备中的数据中毒袭击,通过异常检测来监测每个本地的单个节点模式。 中毒防御服务器是否有可靠的测试数据集,我们设计了Lunderline{odeline{m}odeline{odeline{odeline{t}}}est kendline{defline{lickrlickrlickrlickr} 评估 范围{ablient} ablodiversal deviewer dal deview ladal degal degal degal degal dal dal dal dals, ladestration laft dal lade dal lade dald dald dald dald dald dald dald) rof dals 可以 。