Technical debt occurs in many different forms across software artifacts. One such form is connected to software architectures where debt emerges in the form of structural anti-patterns across architecture elements, namely, architecture smells. As defined in the literature, ``Architecture smells are recurrent architectural decisions that negatively impact internal system quality", thus increasing technical debt. In this paper, we aim at exploring whether there exist manifestations of architectural technical debt beyond decreased code or architectural quality, namely, whether there is a relation between architecture smells (which primarily reflect structural characteristics) and the occurrence of concurrency bugs (which primarily manifest at runtime). We study 125 releases of 5 large data-intensive software systems to reveal that (1) several architecture smells may in fact indicate the presence of concurrency problems likely to manifest at runtime but (2) smells are not correlated with concurrency in general -- rather, for specific concurrency bugs they must be combined with an accompanying articulation of specific project characteristics such as project distribution. As an example, a cyclic dependency could be present in the code, but the specific execution-flow could be never executed at runtime.


翻译:技术债务以不同形式存在于软件构件中,其中一种形式与软件架构相关。此类技术债务以结构型反模式呈现,即架构异味。文献定义“架构异味为负面影响内部系统质量的重复性架构决策”,从而增加技术债务。本文旨在探讨除了降低代码或架构质量之外是否存在其他负债的架构技术债务表现形式。即,架构异味(通常反映结构特征)与并发缺陷(主要表现在运行时)之间是否存在关系。我们研究了5个大型数据密集型软件系统的125个版本,揭示出(1)若干架构异味可能表明运行时存在并发问题,但(2)异味并不总是与并发相关-对于特定的并发缺陷,它们必须与特定项目特征(如项目分布)相结合。例如,代码中可能存在循环依赖,但具体的执行流程可能在运行时永远不会被执行。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Redis客户端Lettuce深度分析介绍(上)
阿里技术
1+阅读 · 2022年10月31日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
Redis客户端Lettuce深度分析介绍(上)
阿里技术
1+阅读 · 2022年10月31日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员