We introduce a new class of ballanced allocation processes which are primarily characterized by ``filling'' underloaded bins. A prototypical example is the Packing process: At each round we only take one bin sample, if the load is below the average load, then we place as many balls until the average load is reached; otherwise, we place only one ball. We prove that for any process in this class the gap between the maximum and average load is $\mathcal{O}(\log n)$ w.h.p.\ for any number of balls $m\geq 1$. For the Packing process, we also provide a matching lower bound. Additionally, we prove that the Packing process is sample-efficient in the sense that the expected number of balls allocated per sample is strictly greater than one. Finally, we also demonstrate that the upper bound of $\mathcal{O}(\log n)$ on the gap can be extended to the Memory process studied by Mitzenmacher, Prabhakar and Shah (2002).
翻译:我们引入了一个新的球状分配程序类别, 其特点主要是“ 填充” 负载不足的垃圾桶。 一个典型的例子就是包装过程 : 每回合我们只取一个垃圾箱样本, 如果负载低于平均负荷, 那么我们就会在平均负荷达到之前放置多个球; 否则, 我们只放一个球。 我们证明, 对于这个类别中的任何进程, 最大和平均负荷之间的差额是$\mathcal{O}(\log n)$ w.hp.\\ 任何数量球的 w.h. p. 。 对于包装过程, 我们还提供一个匹配的捆绑。 此外, 我们证明包装过程的样品效率是, 也就是说每个样本所分配的球的预期数量绝对大于一个。 最后, 我们还证明, 在空白上的$\mathcal{O}(\log n) 的上限可以扩大到Mitzenmacher、 Prabhakar和Shah (2002年) 所研究的记忆过程 。