Text-based video segmentation is a challenging task that segments out the natural language referred objects in videos. It essentially requires semantic comprehension and fine-grained video understanding. Existing methods introduce language representation into segmentation models in a bottom-up manner, which merely conducts vision-language interaction within local receptive fields of ConvNets. We argue that such interaction is not fulfilled since the model can barely construct region-level relationships given partial observations, which is contrary to the description logic of natural language/referring expressions. In fact, people usually describe a target object using relations with other objects, which may not be easily understood without seeing the whole video. To address the issue, we introduce a novel top-down approach by imitating how we human segment an object with the language guidance. We first figure out all candidate objects in videos and then choose the refereed one by parsing relations among those high-level objects. Three kinds of object-level relations are investigated for precise relationship understanding, i.e., positional relation, text-guided semantic relation, and temporal relation. Extensive experiments on A2D Sentences and J-HMDB Sentences show our method outperforms state-of-the-art methods by a large margin. Qualitative results also show our results are more explainable. Besides, based on the inspiration, we win the first place in CVPR2021 Referring Youtube-VOS challenge.
翻译:以文字为基础的视频分割是一项具有挑战性的任务,它将自然语言在视频中指向对象。 它基本上需要语义理解和精细的视频理解。 现有的方法将语言代表引入自下而上的方式将语言代表引入分割模式, 仅仅在ConvNets 的当地可接受域内进行视觉语言互动。 我们争辩说, 这种互动没有实现, 因为根据部分观察, 模型几乎无法构建区域层面的关系, 这与自然语言/ 引用表达表达方式的描述逻辑相悖。 事实上, 人们通常使用与其他对象的关系描述目标对象, 不看整个视频可能很容易理解这些对象。 为了解决这个问题, 我们引入了一种新的自上而下的方法, 模仿我们如何以语言指导的方式将人类部分作为对象。 我们首先在视频中找出所有候选对象, 然后通过区分这些高层次对象之间的关系来选择被引用的。 三种目标级别关系被调查为精确的关系理解, 例如, 定位关系, 文本引导的语义关系, 以及时间关系。 在 A2D 句和 J- HMDB 版本中进行广泛的实验, 展示我们基于 C 的双曲线的双曲线的结果。