Among the most extreme objects in the Universe, active galactic nuclei (AGN) are luminous centers of galaxies where a black hole feeds on surrounding matter. The variability patterns of the light emitted by an AGN contain information about the physical properties of the underlying black hole. Upcoming telescopes will observe over 100 million AGN in multiple broadband wavelengths, yielding a large sample of multivariate time series with long gaps and irregular sampling. We present a method that reconstructs the AGN time series and simultaneously infers the posterior probability density distribution (PDF) over the physical quantities of the black hole, including its mass and luminosity. We apply this method to a simulated dataset of 11,000 AGN and report precision and accuracy of 0.4 dex and 0.3 dex in the inferred black hole mass. This work is the first to address probabilistic time series reconstruction and parameter inference for AGN in an end-to-end fashion.
翻译:在宇宙中最极端的物体中,活跃的银核(AGN)是星系的发光中心,黑洞以周围物质为食。AGN释放的光的变异模式包含关于黑洞物理特性的信息。即将到来的望远镜将用多个宽带波长观测超过1亿AGN,产生大量多变时间序列样本,并存在长期差距和不规则取样。我们提出了一个方法来重建AGN时间序列,同时将黑洞的物理数量包括其质量和光度的后发概率分布(PDF)与黑洞的后发概率分布(PDF)相推。我们对11 000 AGN的模拟数据集应用了这种方法,并报告了推断黑洞质量中0.4 dex和0.3 dex的精确度和准确度。这是第一个以端对端方式处理异常时间序列的重建和参数推断。