Our purpose is to estimate the posterior distribution of the parameters of interest for controlled branching processes (CBPs) without prior knowledge of the maximum number of offspring that an individual can give birth to and without explicit likelihood calculations. We consider that only the population sizes at each generation and at least the number of progenitors of the last generation are observed, but the number of offspring produced by any individual at any generation is unknown. The proposed approach is two-fold. Firstly, to estimate the maximum progeny per individual we make use of an approximate Bayesian computation (ABC) algorithm for model choice and based on sequential importance sampling with the raw data. Secondly, given such an estimate and taking advantage of the simulated values of the previous stage, we approximate the posterior distribution of the main parameters of a CBP by applying the rejection ABC algorithm with an appropriate summary statistic and a post-processing adjustment. The accuracy of the proposed method is illustrated by means of simulated examples developed with the statistical software R. Moreover, we apply the methodology to two real datasets describing populations with logistic growth. To this end, different population growth models based on CBPs are proposed for the first time.


翻译:我们的目的是估计受控支流过程(CBPs)利益参数的后期分布,事先不知晓个人可以生育的后代的最大数量,而且没有明显的可能性计算;我们认为,只观察每一代的人口规模,至少是观察最后一代后代的人数,但任何个人在任何一代中产生的后代数量不详;提议的方法是双重的;首先,估计每个个人使用近似贝叶西亚计算算法进行模型选择并以原始数据相继重要性抽样为依据的最大生育期。第二,考虑到这种估计并利用前一个阶段的模拟值,我们通过应用拒绝ABC算法,以适当的简要统计和处理后调整,大致估计CBPP的主要参数的后期分布;拟议方法的准确性通过与统计软件R一起开发的模拟示例加以说明。此外,我们采用这一方法对两个真实数据集进行模拟,说明人口物流增长。为此,我们首次提议了基于CBPs的人口增长模式。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员