Intelligent systems designed for play-based interactions should be contextually aware of the users and their surroundings. Spoken Dialogue Systems (SDS) are critical for these interactive agents to carry out effective goal-oriented communication with users in real-time. For the real-world (i.e., in-the-wild) deployment of such conversational agents, improving the Natural Language Understanding (NLU) module of the goal-oriented SDS pipeline is crucial, especially with limited task-specific datasets. This study explores the potential benefits of a recently proposed transformer-based multi-task NLU architecture, mainly to perform Intent Recognition on small-size domain-specific educational game datasets. The evaluation datasets were collected from children practicing basic math concepts via play-based interactions in game-based learning settings. We investigate the NLU performances on the initial proof-of-concept game datasets versus the real-world deployment datasets and observe anticipated performance drops in-the-wild. We have shown that compared to the more straightforward baseline approaches, Dual Intent and Entity Transformer (DIET) architecture is robust enough to handle real-world data to a large extent for the Intent Recognition task on these domain-specific in-the-wild game datasets.
翻译:为游戏式互动设计的智能系统应当根据具体情况了解用户及其周围环境。 口述对话系统( SDS)对于这些互动代理机构在实时与用户开展有效的面向目标的交流至关重要。 对于现实世界(即,在网上)部署这种对话代理机构来说,改进面向目标的 SDS 管道的自然语言理解模块至关重要, 特别是在任务特定数据集有限的情况下。本研究探索了最近提议的基于变压器的多任务NLU架构的潜在好处, 主要是在小型特定域教育游戏数据集上进行内在识别。 评估数据集是从儿童那里收集的,通过游戏式学习环境中的游戏互动来练习基本数学概念。 我们调查了最初的校验游戏数据集相对于现实世界部署数据集的自然语言理解模块的表现,并观察了预期的业绩下降。 我们显示,与更直截的基线方法相比, Dion Int 和 实体游戏- Introdustrate- dislational- dust- dal- dal- dust-dal- dust-dal- dust-dal- dust- dal- dust- dust- dal- dust- dust- dust- disal- disal- dal- dal- dal- disal- dal- das) 结构, 我们这些任务架构。我们调查了这些任务架构。