Recent advances in data-generating techniques led to an explosive growth of geo-spatiotemporal data. In domains such as hydrology, ecology, and transportation, interpreting the complex underlying patterns of spatiotemporal interactions with the help of deep learning techniques hence becomes the need of the hour. However, applying deep learning techniques without domain-specific knowledge tends to provide sub-optimal prediction performance. Secondly, training such models on large-scale data requires extensive computational resources. To eliminate these challenges, we present a novel distributed domain-aware spatiotemporal network that utilizes domain-specific knowledge with improved model performance. Our network consists of a pixel-contribution block, a distributed multiheaded multichannel convolutional (CNN) spatial block, and a recurrent temporal block. We choose flood prediction in hydrology as a use case to test our proposed method. From our analysis, the network effectively predicts high peaks in discharge measurements at watershed outlets with up to 4.1x speedup and increased prediction performance of up to 93\%. Our approach achieved a 12.6x overall speedup and increased the mean prediction performance by 16\%. We perform extensive experiments on a dataset of 23 watersheds in a northern state of the U.S. and present our findings.


翻译:在水文、生态和交通等领域,在深层学习技术的帮助下,解读了时空互动的复杂基本模式。然而,采用没有特定领域知识的深层次学习技术往往提供低于最佳的预测性能。第二,在大规模数据方面培训这种模型需要广泛的计算资源。为了消除这些挑战,我们展示了一个分布式的域觉空间时空网络,利用特定领域的知识,改进模型性能。我们的网络由一个像素贡献块、分布式多孔多通道空间块和经常性时空块组成。我们选择在水文学中进行洪水预测,作为测试我们拟议方法的一个使用案例。从我们的分析来看,网络有效地预测了流域端点排放测量的高峰值,达到4.1x速度,预测性能提高到93 ⁇ 。我们的方法取得了12.6x的总体加速度,提高了平均预测性能。我们对北纬23号流域的研究结果进行了广泛的实验。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
29+阅读 · 2022年9月10日
Arxiv
13+阅读 · 2021年10月9日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员