Recent advances in data-generating techniques led to an explosive growth of geo-spatiotemporal data. In domains such as hydrology, ecology, and transportation, interpreting the complex underlying patterns of spatiotemporal interactions with the help of deep learning techniques hence becomes the need of the hour. However, applying deep learning techniques without domain-specific knowledge tends to provide sub-optimal prediction performance. Secondly, training such models on large-scale data requires extensive computational resources. To eliminate these challenges, we present a novel distributed domain-aware spatiotemporal network that utilizes domain-specific knowledge with improved model performance. Our network consists of a pixel-contribution block, a distributed multiheaded multichannel convolutional (CNN) spatial block, and a recurrent temporal block. We choose flood prediction in hydrology as a use case to test our proposed method. From our analysis, the network effectively predicts high peaks in discharge measurements at watershed outlets with up to 4.1x speedup and increased prediction performance of up to 93\%. Our approach achieved a 12.6x overall speedup and increased the mean prediction performance by 16\%. We perform extensive experiments on a dataset of 23 watersheds in a northern state of the U.S. and present our findings.
翻译:在水文、生态和交通等领域,在深层学习技术的帮助下,解读了时空互动的复杂基本模式。然而,采用没有特定领域知识的深层次学习技术往往提供低于最佳的预测性能。第二,在大规模数据方面培训这种模型需要广泛的计算资源。为了消除这些挑战,我们展示了一个分布式的域觉空间时空网络,利用特定领域的知识,改进模型性能。我们的网络由一个像素贡献块、分布式多孔多通道空间块和经常性时空块组成。我们选择在水文学中进行洪水预测,作为测试我们拟议方法的一个使用案例。从我们的分析来看,网络有效地预测了流域端点排放测量的高峰值,达到4.1x速度,预测性能提高到93 ⁇ 。我们的方法取得了12.6x的总体加速度,提高了平均预测性能。我们对北纬23号流域的研究结果进行了广泛的实验。