We prove that the partition rank and the analytic rank of tensors are equivalent up to a constant, over any large enough finite field (independently of the number of variables). The proof constructs rational maps computing a partition rank decomposition for successive derivatives of the tensor, on a carefully chosen subset of the kernel variety associated with the tensor. Proving the equivalence between these two quantities is the main question in the "bias implies low rank" line of work in higher-order Fourier analysis, and was reiterated by multiple authors.


翻译:我们证明,对于任何足够有限的大字段(独立于变量数量)而言,隔段等级和分析等级等同于一个常数。 证据构建了合理的地图,计算了隔段等级分解的分解法,以计算与高压相关的内核品种中经过仔细选择的分层分解。 证明这两个数量之间的等值是高阶Fourier分析中“比值意味着低级”工作的主要问题,并得到了多个作者的重申。

0
下载
关闭预览

相关内容

【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
15+阅读 · 2020年12月17日
Arxiv
17+阅读 · 2019年3月28日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
8+阅读 · 2019年1月8日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员