Efficient representations of data are essential for processing, exploration, and human understanding, and Principal Component Analysis (PCA) is one of the most common dimensionality reduction techniques used for the analysis of large, multivariate datasets today. Two well-known limitations of the method include sensitivity to outliers and noise and no clear methodology for the uncertainty quantification of the principle components or their associated explained variances. Whereas previous work has focused on each of these problems individually, we propose a scalable method called Ensemble PCA (EPCA) that addresses them simultaneously for data which has an inherently low-rank structure. EPCA combines boostrapped PCA with k-means cluster analysis to handle challenges associated with sign-ambiguity and the re-ordering of components in the PCA subsamples. EPCA provides a noise-resistant extension of PCA that lends itself naturally to uncertainty quantification. We test EPCA on data corrupted with white noise, sparse noise, and outliers against both classical PCA and Robust PCA (RPCA) and show that EPCA performs competitively across different noise scenarios, with a clear advantage on datasets containing outliers and orders of magnitude reduction in computational cost compared to RPCA.
翻译:暂无翻译