Processing massive application graphs on distributed memory systems requires to map the graphs onto the system's processing elements (PEs). This task becomes all the more important when PEs have non-uniform communication costs or the input is highly irregular. Typically, mapping is addressed using partitioning, in a two-step approach or an integrated one. Parallel partitioning tools do exist; yet, corresponding mapping algorithms or their public implementations all have major sequential parts or other severe scaling limitations. In this paper, we propose a parallel algorithm that maps graphs onto the PEs of a hierarchical system. Our solution integrates partitioning and mapping; it models the system hierarchy in a concise way as an implicit labeled tree. The vertices of the application graph are labeled as well, and these vertex labels induce the mapping. The mapping optimization follows the basic idea of parallel label propagation, but we tailor the gain computations of label changes to quickly account for the induced communication costs. Our MPI-based code is the first public implementation of a parallel graph mapping algorithm; to this end, we extend the partitioning library ParHIP. To evaluate our algorithm's implementation, we perform comparative experiments with complex networks in the million- and billion-scale range. In general our mapping tool shows good scalability on up to a few thousand PEs. Compared to other MPI-based competitors, our algorithm achieves the best speed to quality trade-off and our quality results are even better than non-parallel mapping tools.


翻译:分布式内存系统中的大规模应用程序图处理要求将图表映射到系统中的处理元素( PE) 。 当 PE 具有非统一通信成本或输入高度不规则时,这一任务就变得更加重要。 通常地, 映射会用分割法、 两步方法或集成方法来处理。 平行分割工具确实存在; 相应的映射算法或其公共实施都具有重要的相继部分或其他严重缩放限制。 在本文中, 我们提议了一个平行的算法, 将图形映射到系统处理元素的 PE 上。 我们的解算法将分区和映射整合; 它以简洁的方式将系统等级结构建成隐含标签的树。 应用程序图的顶端也贴上标签, 而这些顶端标签会引导绘图。 映射最优化会遵循平行标签传播的基本理念, 但是我们将标签变更的收益计算方法调整为快速计算引致通信成本。 我们基于 MPI 的代码是首次公开实施平行的图形映射算法; 到此端, 我们将共享图书馆 剖析系统以简洁的方式建成为隐含图树树树树树树树。 为了评估我们的系统的质量图, 我们的图质量图, 我们的顶部质量图的顶部的顶部的顶部的图, 将我们进行着比测算的网络的比测算取到更精确的网络, 我们的比的模型的轨道, 上, 我们在千年的比的比的轨道上, 我们的轨道上, 我们的算法将进行到更精确度为10亿次的算取的算取的轨道,, 我们的算取的算取的实验室的算取的实验室的轨道的比的比的比的比的比的比的轨道, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月3日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年9月3日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年6月24日
Top
微信扫码咨询专知VIP会员