This paper presents a data-driven localization framework with high precision in time-varying complex multipath environments, such as dense urban areas and indoors, where GPS and model-based localization techniques come short. We consider the angle-delay profile (ADP), a linear transformation of channel state information (CSI), in massive MIMO systems and show that ADPs preserve users' motion when stacked temporally. We discuss that given a static environment, future frames of ADP time-series are predictable employing a video frame prediction algorithm. We express that a deep convolutional neural network (DCNN) can be employed to learn the background static scattering environment. To detect foreground changes in the environment, corresponding to path blockage or addition, we introduce an algorithm taking advantage of the trained DCNN. Furthermore, we present DyLoc, a data-driven framework to recover distorted ADPs due to foreground changes and to obtain precise location estimations. We evaluate the performance of DyLoc in several dynamic scenarios employing DeepMIMO dataset to generate geo-tagged CSI datasets for indoor and outdoor environments. We show that previous DCNN-based techniques fail to perform with desirable accuracy in dynamic environments, while DyLoc pursues localization precisely. Moreover, simulations show that as the environment gets richer in terms of the number of multipath, DyLoc gets more robust to foreground changes.
翻译:本文展示了一个数据驱动本地化框架, 在时间变化的复杂多路环境(如密集的城市地区和室内)中, 数据驱动本地化框架非常精确, 在时间变化的复杂多路环境(如密集的城市地区和室内)中, 全球定位系统和基于模型的本地化技术都存在缺陷。 我们考虑在大型的MIMO系统中, 角缓冲配置( ADP), 频道状态信息的线性转换( CSI), 并显示ADP在时间堆积时会保护用户的动作。 我们讨论的是, 在一个静态环境中, ADP时间序列的未来框架是可以预测的。 我们表示, 可以使用深电离子神经网络( DCNNN) 来学习背景静态分散环境。 为了探测环境的表面变化, 与路径阻隔断或添加相匹配的路径, 我们采用一种算法来利用训练有素的 DCL 框架 来恢复扭曲的 ADP 。 此外, 我们展示一个数据驱动框架框架, 用于地面变化和精确的多功能环境。