In this paper we study the kernelization of $d$-Path Vertex Cover ($d$-PVC) problem. Given a graph $G$, the problem requires finding whether there exists a set of at most $k$ vertices whose removal from $G$ results in a graph that does not contain a path (not necessarily induced) of length $d$. It is known that $d$-PVC is NP-complete for $d \geq 2$. Since the problem generalizes to $d$-Hitting Set, it is known to admit a kernel of size $(2d-1)k^{d-1}+k$. We improve on this by giving better kernels. Specifically, we give $O(k^2)$ size (vertices and edges) kernels for the cases when $d = 4$ and $d = 5$. Further, we give an $O(k^3)$ size kernel for $d$-PVC.
翻译:在本文中,我们研究了美元-Path Vertex Cover(美元-PVC)的内存问题。根据一张G$的图表,问题要求找出是否有一套最多为K$的脊椎,从G$中剔除这些脊椎的图表并不包含长度为D$的路径(不一定引起),众所周知,美元-PVC以美元=2美元计算是NP-美元=Geq=2美元。由于问题一般为美元-Hitting Set,我们知道它包含一个大小为$(2d-1)k ⁇ d-1 ⁇ kk$的内核。我们通过提供更好的内核来改进这一点。具体地说,当美元=4美元和美元=5美元时,我们给美元(k ⁇ 2)的内核。此外,我们给美元-PVC以O(k)3美元大小的内核内核。