In many complex applications, data heterogeneity and homogeneity exist simultaneously. Ignoring either one will result in incorrect statistical inference. In addition, coping with complex data that are non-Euclidean becomes more common. To address these issues we consider a distributional data response additive model in which the response is a distributional density function and the individual effect curves are homogeneous within a group but heterogeneous across groups, the covariates capturing the variation share common additive bivariate functions. A transformation approach is first utilized to map density functions into a linear space. We then apply the B-spline series approximating method to estimate the unknown subject-specific and additive bivariate functions, and identify the latent group structures by hierarchical agglomerative clustering (HAC) algorithm. Our method is demonstrated to identify the true latent group structures with probability approaching one. To improve the efficiency, we further construct the backfitted local linear estimators for grouped structures and additive bivariate functions in post-grouping model. We establish the asymptotic properties of the resultant estimators including the convergence rates, asymptotic distributions and the post-grouping oracle efficiency. The performance of the proposed method is illustrated by simulation studies and empirical analysis with some interesting results.


翻译:在许多复杂的应用中,数据异质性和同质性同时存在。 忽略其中任何一个将会导致不正确的统计推断。 此外, 处理非欧化物的复杂数据会变得更为常见。 为了解决这些问题, 我们考虑一个分布式数据响应添加模型, 该模型的响应是一个分布式密度函数, 个别效应曲线在一个组内是同质的, 但各组之间各有差异, 共变中捕捉变量共享的共同添加性双变函数。 首先使用变异法将密度函数映射成线性空间。 然后我们采用B- spline序列近似法来估计未知的主题和添加性双变函数, 并通过等级的聚集(HAC)算法确定潜在组结构。 我们的方法被证明能够识别真实的潜在群群结构, 其概率接近一, 提高效率, 我们进一步构建组合后模型中组合结构结构和添加性双变异功能的本地线性估计器。 我们用B- 样序列序列序列方法来估计结果特定主题和添加性双变函数的属性, 并用高级集法进行模拟分析, 模拟分析的结果和模拟结果分析, 模拟分析是模拟性分析, 演化结果分析, 演化结果分析, 演算法和演化结果分析, 演算法分析是。

0
下载
关闭预览

相关内容

专知会员服务
63+阅读 · 2020年3月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员