Melanoma is the deadliest form of skin cancer. Uncontrollable growth of melanocytes leads to melanoma. Melanoma has been growing wildly in the last few decades. In recent years, the detection of melanoma using image processing techniques has become a dominant research field. The Automatic Melanoma Detection System (AMDS) helps to detect melanoma based on image processing techniques by accepting infected skin area images as input. A single lesion image is a source of multiple features. Therefore, It is crucial to select the appropriate features from the image of the lesion in order to increase the accuracy of AMDS. For melanoma detection, all extracted features are not important. Some of the extracted features are complex and require more computation tasks, which impacts the classification accuracy of AMDS. The feature extraction phase of AMDS exhibits more variability, therefore it is important to study the behaviour of AMDS using individual and extended feature extraction approaches. A novel algorithm ExtFvAMDS is proposed for the calculation of Extended Feature Vector Space. The six models proposed in the comparative study revealed that the HSV feature vector space for automatic detection of melanoma using Ensemble Bagged Tree classifier on Med-Node Dataset provided 99% AUC, 95.30% accuracy, 94.23% sensitivity, and 96.96% specificity.
翻译:皮肤癌是皮肤癌的最致命形式。 色素的不可控制增长导致黑素瘤。 在过去几十年中, 色素的不控制增长导致黑素瘤 。 近些年来, 利用图像处理技术检测黑素瘤已成为一个主要的研究领域。 自动黑素检测系统(AMDS)通过接受受感染的皮肤区域图像作为输入, 有助于根据图像处理技术检测黑素瘤。 一个单一的损伤图像是多种特征的来源之一。 因此, 从损伤图像中选择适当的特征以提高 AMDS 的准确性至关重要。 对于色素检测来说,所有提取的特征都不重要。 一些提取的特征十分复杂,需要更多的计算任务,这影响到AMDS的分类准确性。 因此, 自动黑素检测系统特征的提取阶段显示更多变异性,因此有必要使用个人和扩展的特征提取方法来研究AMDSDS的行为。 一种新型的算法 ExtFMADS, 用于计算扩展的变异性矢量空间。 比较研究中提议的六种模型显示, HSV特性矢量矢量矢量矢量矢量空间, 95, 和99BMDMC30 。