Melanoma is the deadliest form of skin cancer. Uncontrollable growth of melanocytes leads to melanoma. Melanoma has been growing wildly in the last few decades. In recent years, the detection of melanoma using image processing techniques has become a dominant research field. The Automatic Melanoma Detection System (AMDS) helps to detect melanoma based on image processing techniques by accepting infected skin area images as input. A single lesion image is a source of multiple features. Therefore, It is crucial to select the appropriate features from the image of the lesion in order to increase the accuracy of AMDS. For melanoma detection, all extracted features are not important. Some of the extracted features are complex and require more computation tasks, which impacts the classification accuracy of AMDS. The feature extraction phase of AMDS exhibits more variability, therefore it is important to study the behaviour of AMDS using individual and extended feature extraction approaches. A novel algorithm ExtFvAMDS is proposed for the calculation of Extended Feature Vector Space. The six models proposed in the comparative study revealed that the HSV feature vector space for automatic detection of melanoma using Ensemble Bagged Tree classifier on Med-Node Dataset provided 99% AUC, 95.30% accuracy, 94.23% sensitivity, and 96.96% specificity.


翻译:皮肤癌是皮肤癌的最致命形式。 色素的不可控制增长导致黑素瘤。 在过去几十年中, 色素的不控制增长导致黑素瘤 。 近些年来, 利用图像处理技术检测黑素瘤已成为一个主要的研究领域。 自动黑素检测系统(AMDS)通过接受受感染的皮肤区域图像作为输入, 有助于根据图像处理技术检测黑素瘤。 一个单一的损伤图像是多种特征的来源之一。 因此, 从损伤图像中选择适当的特征以提高 AMDS 的准确性至关重要。 对于色素检测来说,所有提取的特征都不重要。 一些提取的特征十分复杂,需要更多的计算任务,这影响到AMDS的分类准确性。 因此, 自动黑素检测系统特征的提取阶段显示更多变异性,因此有必要使用个人和扩展的特征提取方法来研究AMDSDS的行为。 一种新型的算法 ExtFMADS, 用于计算扩展的变异性矢量空间。 比较研究中提议的六种模型显示, HSV特性矢量矢量矢量矢量矢量空间, 95, 和99BMDMC30 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员