The nature of available economic data has changed fundamentally in the last decade due to the economy's digitisation. With the prevalence of often black box data-driven machine learning methods, there is a necessity to develop interpretable machine learning methods that can conduct econometric inference, helping policymakers leverage the new nature of economic data. We therefore present a novel Variational Bayesian Inference approach to incorporate a time-varying parameter auto-regressive model which is scalable for big data. Our model is applied to a large blockchain dataset containing prices, transactions of individual actors, analyzing transactional flows and price movements on a very granular level. The model is extendable to any dataset which can be modelled as a dynamical system. We further improve the simple state-space modelling by introducing non-linearities in the forward model with the help of machine learning architectures.
翻译:过去十年来,由于经济的数字化,现有经济数据的性质发生了根本性的变化。由于经常采用黑盒数据驱动的机器学习方法,有必要开发可解释的机器学习方法,以进行计量经济推断,帮助决策者利用经济数据的新性质。因此,我们提出了一个新颖的变式贝叶斯推论方法,以纳入一个时间变化参数自动递减模型,该模型可用于大数据。我们的模型适用于一个大型块链数据集,其中包含价格、个人行为者的交易、交易流量分析以及非常颗粒水平的价格变动。该模型可以推广到任何可以模拟动态系统的数据集。我们通过机器学习结构的帮助,在远方模型中引入非线性,进一步改进简单的状态空间建模。