Reed-Muller (RM) codes achieve the capacity of general binary-input memoryless symmetric channels and have a comparable performance to that of random codes in terms of scaling laws. However, they lack efficient decoders with performance close to that of a maximum-likelihood decoder for general code parameters. Also, they only admit limited sets of rates. In this paper, we focus on subcodes of RM codes with flexible rates. We first extend the recently-introduced recursive projection-aggregation (RPA) decoding algorithm to RM subcodes. To lower the complexity of our decoding algorithm, referred to as subRPA, we investigate different approaches to prune the projections. Next, we derive the soft-decision based version of our algorithm, called soft-subRPA, that not only improves upon the performance of subRPA but also enables a differentiable decoding algorithm. Building upon the soft-subRPA algorithm, we then provide a framework for training a machine learning (ML) model to search for \textit{good} sets of projections that minimize the decoding error rate. Training our ML model enables achieving very close to the performance of full-projection decoding with a significantly smaller number of projections. We also show that the choice of the projections in decoding RM subcodes matters significantly, and our ML-aided projection pruning scheme is able to find a \textit{good} selection, i.e., with negligible performance degradation compared to the full-projection case, given a reasonable number of projections.
翻译:Reed- Muller (RM) 代码能达到普通二进制的无内存对称信道的能力,并且具有与随机编码在缩放法方面的类似性能。 但是,它们缺乏高效的解码器,其性能接近于通用代码参数的最大类似解码器的解码器。 此外,它们只承认有限的一套费率。 在本文中, 我们侧重于 RM 代码的子编码, 且使用灵活率。 我们首先将最近推出的循环投影-汇总(RPA) 解码算法扩展至 RM 子代码。 为了降低我们被称为 SRPA 的解码算法的复杂性, 我们调查了不同的方法, 以接近的解码法计算预测。 下一步, 我们以软式的解码为基的解码, 不仅改进了子RPA的性能, 而且还允许一种不同的解码算法。 以软性RPA值算法的算法为基础, 我们然后提供一个框架, 训练一个机器学习模型, 来搜索流化的模型{good} 比较的解算法的算法, 我们的预测的一套微的预测, 也能够大大降低的MCRPDroderode 的预测。