A 2018 conjecture of Brewster, McGuinness, Moore, and Noel asserts that for $k \ge 3$, if a graph has chromatic number greater than $k$, then it contains at least as many cycles of length $0 \bmod k$ as the complete graph on $k+1$ vertices. Our main result confirms this in the $k=3$ case by showing every $4$-critical graph contains at least $4$ cycles of length $0 \bmod 3$, and that $K_4$ is the unique such graph achieving the minimum. We make progress on the general conjecture as well, showing that $(k+1)$-critical graphs with minimum degree $k$ have at least as many cycles of length $0\bmod r$ as $K_{k+1}$, provided $k+1 \ne 0 \bmod r$. We also show that $K_{k+1}$ uniquely minimizes the number of cycles of length $1\bmod k$ among all $(k+1)$-critical graphs, strengthening a recent result of Moore and West and extending it to the $k=3$ case.
翻译:暂无翻译