The present work revisits the reduction of the nonlinear dynamics of an electromechanical system through a quasi-steady state hypothesis, discussing the fundamental aspects of this type of approach and clarifying some confusing points found in the literature. Expressions for the characteristic time scales of dynamics are deduced from a physical analysis that establishes an analogy between electromechanical dynamics and the kinetics of a chemical reaction. It provides a physical justification, supplemented by non-dimensionalization and scaling of the equations, to reduce the dynamics of interest by assuming a quasi-steady state for the electrical subsystem, eliminating the inductive term from the electrical equation. Numerical experiments help to illustrate the typical behavior of the electromechanical system, a boundary layer phenomenon near the initial dynamic state, and the validity limits of the electromechanical quasi-steady-state assumption discussed here.
翻译:目前的工作通过准稳定状态的假设,重新审视了电动机械系统非线性动态的减少问题,讨论了这种方法的基本方面,并澄清了文献中发现的一些混淆点。动态的典型时间尺度的表达方式是从物理分析中推导出来的,这种分析在电动机械动态和化学反应的动能之间建立了类比。它提供了物理上的理由,并辅以方程的非维化和缩放,以便通过假定电子系统的准稳定状态,消除电子等式中的诱导性术语,来减少相关动态。数字实验有助于说明电子机械系统的典型行为、靠近初始动态状态的边界层现象以及此处讨论的电机性准稳定状态假设的有效性限度。