Type 1 Diabetes (T1D) is a chronic condition where the body produces little or no insulin, a hormone required for the cells to use blood glucose (BG) for energy and to regulate BG levels in the body. Finding the right insulin dose and time remains a complex, challenging and as yet unsolved control task. In this study, we use the OpenAPS Data Commons dataset, which is an extensive dataset collected in real-life conditions, to discover temporal patterns in insulin need driven by well-known factors such as carbohydrates as well as potentially novel factors. We utilised various time series techniques to spot such patterns using matrix profile and multi-variate clustering. The better we understand T1D and the factors impacting insulin needs, the more we can contribute to building data-driven technology for T1D treatments.
翻译:1型糖尿病(T1D)是一种慢性病,身体产生很少或没有胰岛素,这是一种激素,是细胞在能量中使用血糖和调节体内血糖水平所需的激素。找到正确的胰岛素剂量和时间仍是一项复杂、具有挑战性且尚未解决的控制任务。在这项研究中,我们使用在现实生活条件中收集的广泛数据集的开放APS数据公用数据集,以发现胰岛素需求中由众所周知的因素(如碳水化合物和潜在的新因素)驱动的时间模式。我们利用各种时间序列技术,利用矩阵剖析和多变量集群来发现这种模式。我们越了解T1D和影响胰岛素需求的因素,我们就越能为建立以数据驱动的T1D治疗技术作出贡献。