It is a challenging problem to predict trends of futures prices with traditional econometric models as one needs to consider not only futures' historical data but also correlations among different futures. Spatial-temporal graph neural networks (STGNNs) have great advantages in dealing with such kind of spatial-temporal data. However, we cannot directly apply STGNNs to high-frequency future data because future investors have to consider both the long-term and short-term characteristics when doing decision-making. To capture both the long-term and short-term features, we exploit more label information by designing four heterogeneous tasks: price regression, price moving average regression, price gap regression (within a short interval), and change-point detection, which involve both long-term and short-term scenes. To make full use of these labels, we train our model in a continual manner. Traditional continual GNNs define the gradient of prices as the parameter important to overcome catastrophic forgetting (CF). Unfortunately, the losses of the four heterogeneous tasks lie in different spaces. Hence it is improper to calculate the parameter importance with their losses. We propose to calculate parameter importance with mutual information between original observations and the extracted features. The empirical results based on 49 commodity futures demonstrate that our model has higher prediction performance on capturing long-term or short-term dynamic change.


翻译:传统经济计量模型难以预测期货价格趋势,因为不仅需要考虑期货的历史数据,还需考虑不同期货之间的相关性。时空图神经网络(STGNNs)在处理此类时空数据方面具有巨大优势。然而,我们无法直接将STGNNs应用于高频期货数据,因为期货投资者在做决策时必须考虑长期和短期特征。为捕捉长期和短期特征,我们通过设计四种异构任务(价格回归、价格移动平均回归、价格区间回归和变点检测),来利用更多标签信息,涉及到长期和短期方面的场景。为了充分利用这些标签,我们以连续的方式对模型进行训练。传统的连续GNN将价格的梯度定义为克服灾难性遗忘(CF)的重要参数。不幸的是,四个异构任务的损失处于不同的空间之中,无法用它们的损失来计算参数重要性。我们提出了用原始观察和提取特征之间的互信息来计算参数重要性的方法。基于49个商品期货的实验结果表明,我们的模型在捕捉长期或短期动态变化方面具有更高的预测性能。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
26+阅读 · 2022年12月26日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
45+阅读 · 2020年9月28日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
146+阅读 · 2020年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
神经网络高斯过程 (Neural Network Gaussian Process)
PaperWeekly
0+阅读 · 2022年11月8日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
神经网络高斯过程 (Neural Network Gaussian Process)
PaperWeekly
0+阅读 · 2022年11月8日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员