This is the second year of the TREC Deep Learning Track, with the goal of studying ad hoc ranking in the large training data regime. We again have a document retrieval task and a passage retrieval task, each with hundreds of thousands of human-labeled training queries. We evaluate using single-shot TREC-style evaluation, to give us a picture of which ranking methods work best when large data is available, with much more comprehensive relevance labeling on the small number of test queries. This year we have further evidence that rankers with BERT-style pretraining outperform other rankers in the large data regime.
翻译:今年是TREC深层学习轨道的第二年,目标是研究大型培训数据系统中的特别排名。 我们再次有一个文件检索和通道检索任务,每个任务都有数十万个人类标签的培训查询。 我们用单发的TREC式评估来评估,让我们了解在可获得大数据时哪些排名方法最有效,在数量少的测试查询上贴上更全面得多的标签。 今年,我们还有进一步的证据,证明在大型数据系统中,以BERT为风格的排级人员在培训前优于其他排级人员。