We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lov{\'a}sz--Schrijver SDP operator $\text{LS}_+$, with a particular focus on a search for relatively small graphs with high $\text{LS}_+$-rank (the least number of iterations of the $\text{LS}_+$ operator on the fractional stable set polytope to compute the stable set polytope). We provide families of graphs whose $\text{LS}_+$-rank is asymptotically a linear function of its number of vertices, which is the best possible up to improvements in the constant factor (previous best result in this direction, from 1999, yielded graphs whose $\text{LS}_+$-rank only grew with the square root of the number of vertices). We also provide several new $\text{LS}_+$-minimal graphs, most notably a $12$-vertex graph with $\text{LS}_+$-rank $4$, and study the properties of a vertex-stretching operation that appears to be promising in generating $\text{LS}_+$-minimal graphs.
翻译:我们研究了相对于Lovász-Schrijver SDP算子$\text{LS}_+$的图的稳定集多面体的升及投影秩,特别关注于寻找具有较高$\text{LS}_+$-秩的相对较小的图形(在计算稳定集多面体的$\text{LS}_+$算子的最小迭代次数方面)。我们提供了一族$\text{LS}_+$-秩随其定点个数渐进线性增长的图形,这是最好的改进常数因子的可能(在这方面的先前最佳结果可控制$\text{LS}_+$-秩只随着节点数的平方根增长)。我们还提供了几个新的$\text{LS}_+$-极小图形,最显著的是具有$\text{LS}_+$-秩4的12个顶点的图形,并研究了伸展顶点操作的属性,这种操作可以很好地生成$\text{LS}_+$-极小的图形。