In this paper, we learn to classify visual object instances, incrementally and via self-supervision (self-incremental). Our learner observes a single instance at a time, which is then discarded from the dataset. Incremental instance learning is challenging, since longer learning sessions exacerbate forgetfulness, and labeling instances is cumbersome. We overcome these challenges via three contributions: i. We propose VINIL, a self-incremental learner that can learn object instances sequentially, ii. We equip VINIL with self-supervision to by-pass the need for instance labelling, iii. We compare VINIL to label-supervised variants on two large-scale benchmarks, and show that VINIL significantly improves accuracy while reducing forgetfulness.
翻译:在本文中,我们通过自我监督(自我增量)逐步学习视觉对象实例的分类。我们的学习器每次观察一个实例,然后将其从数据集中丢弃。增量实例学习是具有挑战性的,因为较长的学习会加剧遗忘,标记实例也很麻烦。我们通过三个方面的贡献克服这些挑战:i. 我们提出了VINIL,一种能够顺序地学习对象实例的自我增量学习器,ii. 我们为VINIL配备自我监督,以绕过实例标记的需要,iii. 我们将VINIL与基于标记的有监督变量进行比较,并在两个大型基准测试中展示,VINIL显着提高了准确性,同时减少了遗忘。