Explainable artificial intelligence (XAI) methods shed light on the predictions of deep neural networks (DNNs). Several different approaches exist and have partly already been successfully applied in climate science. However, the often missing ground truth explanations complicate their evaluation and validation, subsequently compounding the choice of the XAI method. Therefore, in this work, we introduce XAI evaluation in the context of climate research and assess different desired explanation properties, namely, robustness, faithfulness, randomization, complexity, and localization. To this end we build upon previous work and train a multi-layer perceptron (MLP) and a convolutional neural network (CNN) to predict the decade based on annual-mean temperature maps. Next, multiple local XAI methods are applied and their performance is quantified for each evaluation property and compared against a baseline test. Independent of the network type, we find that the XAI methods Integrated Gradients, Layer-wise relevance propagation, and InputGradients exhibit considerable robustness, faithfulness, and complexity while sacrificing randomization. The opposite is true for Gradient, SmoothGrad, NoiseGrad, and FusionGrad. Notably, explanations using input perturbations, such as SmoothGrad and Integrated Gradients, do not improve robustness and faithfulness, contrary to previous claims. Overall, our experiments offer a comprehensive overview of different properties of explanation methods in the climate science context and supports users in the selection of a suitable XAI method.


翻译:可解释的人工智能(XAI)方法揭示了对深神经网络(DNNs)的预测。有几种不同的方法存在,部分已经成功地应用于气候科学。然而,往往缺少的地面真相解释使其评估和验证复杂化,随后又增加了XAI方法的选择。因此,在这项工作中,我们在气候研究背景下引入XAI评估,并评估不同的理想解释属性,即稳健性、忠诚性、随机化、复杂性和本地化。为此,我们在以往工作的基础上再接再厉,并培训多层概念(MLP)和动态神经网络(CNN),以根据年均温度图预测十年。接下来,采用多处当地XAI方法,对每项评估属性进行量化,并与基线测试进行比较。我们发现,XAI方法采用综合渐进性、多层相关性的传播和投入,在牺牲随机化的同时,表现出相当强的力度、忠诚性和复杂性。对于Graid、SlipGAGGA和FFlorality的用户来说,情况正好相反,采用不同的解释方法。Gral-Gravelopations、Gravelrientalalalal、Grualalalal、Gravientalalalalalalation、Groislations、Grualislations、不甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚甚,我们。</s>

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员