We consider the bi-criteria shortest-path problem where we want to compute shortest paths on a graph that simultaneously balance two cost functions. While this problem has numerous applications, there is usually no path minimizing both cost functions simultaneously. Thus, we typically consider the set of paths where no path is strictly better then the others in both cost functions, a set called the Pareto-optimal frontier. Unfortunately, the size of this set may be exponential in the number of graph vertices and the general problem is NP-hard. While existing schemes to approximate this set exist, they may be slower than exact approaches when applied to relatively small instances and running them on graphs with even a moderate number of nodes is often impractical. The crux of the problem lies in how to efficiently approximate the Pareto-optimal frontier. Our key insight is that the Pareto-optimal frontier can be approximated using pairs of paths. This simple observation allows us to run a best-first-search while efficiently and effectively pruning away intermediate solutions in order to obtain an approximation of the Pareto frontier for any given approximation factor. We compared our approach with an adaptation of BOA*, the state-of-the-art algorithm for computing exact solutions to the bi-criteria shortest-path problem. Our experiments show that as the problem becomes harder, the speedup obtained becomes more pronounced. Specifically, on large roadmaps, we obtain an average speedup of more than $\times 8.5$ and a maximal speedup of over $\times 148$.
翻译:我们考虑的是双标准最短路径问题, 我们想在同时平衡两个成本函数的图表上计算最短路径, 这个问题有许多应用, 但通常没有路径可以同时将两种成本函数都最小化。 因此, 我们通常会考虑一系列路径, 没有路径的严格性更好, 而其它路径在两种成本函数中都更好。 一个叫做 Pareto- 最优化边界 。 不幸的是, 这个集的大小可能是图形脊椎数指数指数指数指数指数指数指数指数指数, 而一般问题是PNP- 硬的。 虽然现有的计划可以接近这个数据集, 但是当应用到相对较小的实例并在图表上运行时, 通常没有精确的方法比精确的方法要慢一些。 问题的关键在于如何有效地接近Pareto- 最佳边界。 我们的主要见解是, Pareto- 最优化的边界可以使用双轨线指数指数指数指数指数指数的指数指数指数, 也就是我们最短的路径模型, 更精确的路径比最精确的路径模型更精确的路径 。