The retriever-reader framework is popular for open-domain question answering (ODQA), where a retriever samples for the reader a set of relevant candidate passages from a large corpus. A key assumption behind this method is that high relevance scores from the retriever likely indicate high answerability from the reader, which implies a high probability that the retrieved passages contain answers to a given question. In this work, we empirically dispel this belief and observe that recent dense retrieval models based on DPR often rank unanswerable counterfactual passages higher than their answerable original passages. To address such answer-unawareness in dense retrievers, we seek to use counterfactual samples as additional training resources to better synchronize the relevance measurement of DPR with the answerability of question-passage pairs. Specifically, we present counterfactually-Pivoting Contrastive Learning (PiCL), a novel representation learning approach for passage retrieval that leverages counterfactual samples as pivots between positive and negative samples in their learned embedding space. We incorporate PiCL into the retriever training to show the effectiveness of PiCL on ODQA benchmarks and the robustness of the learned models.
翻译:检索器-阅读器框架是开放域问答(ODQA)中常用的方法,其中检索器从大型语料库中为阅读器提供相关的候选段落。这种方法的一个关键假设是,检索器中的高相关性分数可能表明阅读器具有高可回答性,这意味着检索的段落很可能包含给定问题的答案。在这项工作中,我们通过实验证明这种信仰是错误的,观察到基于 DPR 的最近密集检索模型通常将无法回答的反事实段落排在可回答的原始段落之前。为了解决密集检索器中的这种无法回答问题,我们尝试使用反事实样本作为附加的训练资源,以更好地使 DPR 的相关度度量与问题-段落对的可回答性同步。具体而言,我们提出了基于反事实的构造对比学习(PiCL)——一种新的表示学习方法,用于段落检索,它利用反事实样本在其学习的嵌入空间中在正样本和负样本之间作为中心点。我们将 PiCL 结合到检索器的训练中,以展示 PiCL 在 ODQA 基准测试中的有效性以及学得模型的鲁棒性。