A reliable self-contained navigation system is essential for autonomous vehicles. Based on our previous study on Wheel-INS \cite{niu2019}, a wheel-mounted inertial measurement unit (Wheel-IMU)-based dead reckoning (DR) system, in this paper, we propose a multiple IMUs-based DR solution for the wheeled robots. The IMUs are mounted at different places of the wheeled vehicles to acquire various dynamic information. In particular, at least one IMU has to be mounted at the wheel to measure the wheel velocity and take advantages of the rotation modulation. The system is implemented through a distributed extended Kalman filter structure where each subsystem (corresponding to each IMU) retains and updates its own states separately. The relative position constraints between the multiple IMUs are exploited to further limit the error drift and improve the system robustness. Particularly, we present the DR systems using dual Wheel-IMUs, one Wheel-IMU plus one vehicle body-mounted IMU (Body-IMU), and dual Wheel-IMUs plus one Body-IMU as examples for analysis and comparison. Field tests illustrate that the proposed multi-IMU DR system outperforms the single Wheel-INS in terms of both positioning and heading accuracy. By comparing with the centralized filter, the proposed distributed filter shows unimportant accuracy degradation while holds significant computation efficiency. Moreover, among the three multi-IMU configurations, the one Body-IMU plus one Wheel-IMU design obtains the minimum drift rate. The position drift rates of the three configurations are 0.82\% (dual Wheel-IMUs), 0.69\% (one Body-IMU plus one Wheel-IMU), and 0.73\% (dual Wheel-IMUs plus one Body-IMU), respectively.


翻译:可靠的自足导航系统对自主车辆至关重要。 根据我们先前对基于轮-INIS & Cite{niu2019}的轮-INIS{I2019}、基于轮式惯性惯性测量单元(Wheel-IMU)基于轮式惯性计(DR)系统进行的研究,我们在此文件中为轮式机器人建议一个基于多IMUS的多IMUD解决方案。 轮式车辆的不同位置安装IMU,以获得各种动态信息。 特别是,至少一个IMU必须安装在轮轮上,以测量轮式速度并获取旋转调控的优势。 该系统是通过分布式的延长的 Kalman过滤器结构实施, 每一个子系统(correspossibild-I)都保留并单独更新自己的状态。 多IMUMU的相对位置限制正在进一步限制误差流,提高系统稳性。 我们用双轮- 轮- IMUMU、 1 轮- mMU 和一车架- 机- mUMU(B-IMU IMU) 和双轮- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mold- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mex- mex- mal- 的系统 和1 和1- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- mal- 和1- mal- mal- mal- mal- mal- mal- mal-s- sal-sal-s-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-s-sal-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s- ex- mal- mal- mal- ex-s-s- ex- ex-

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Safe Path following for Middle Ear Surgery
Arxiv
0+阅读 · 2023年1月3日
Arxiv
0+阅读 · 2023年1月2日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员