Generating controllable and editable human motion sequences is a key challenge in 3D Avatar generation. It has been labor-intensive to generate and animate human motion for a long time until learning-based approaches have been developed and applied recently. However, these approaches are still task-specific or modality-specific\cite {ahuja2019language2pose}\cite{ghosh2021synthesis}\cite{ferreira2021learning}\cite{li2021ai}. In this paper, we propose ``UDE", the first unified driving engine that enables generating human motion sequences from natural language or audio sequences (see Fig.~\ref{fig:teaser}). Specifically, UDE consists of the following key components: 1) a motion quantization module based on VQVAE that represents continuous motion sequence as discrete latent code\cite{van2017neural}, 2) a modality-agnostic transformer encoder\cite{vaswani2017attention} that learns to map modality-aware driving signals to a joint space, and 3) a unified token transformer (GPT-like\cite{radford2019language}) network to predict the quantized latent code index in an auto-regressive manner. 4) a diffusion motion decoder that takes as input the motion tokens and decodes them into motion sequences with high diversity. We evaluate our method on HumanML3D\cite{Guo_2022_CVPR} and AIST++\cite{li2021learn} benchmarks, and the experiment results demonstrate our method achieves state-of-the-art performance. Project website: \url{https://github.com/zixiangzhou916/UDE/


翻译:在 3D Astatar 的 3D 產生 3D 產生 控制可控和可编辑的人类動脈序列中, 3D 產生 3D 產生 3Affatar 產生 3D 產生和動動動的人類動脈序列中, 一直需要勞力密集的產生和動動動動動動動動動動動動動動作, 直到最近才被開發行。 然而, 這些方法仍具特定工作或模式特定功能的 {ahuja2019 語系 語系, 根據 VQVADE 代表连续的動動動動動動動動動動動動動動動序, 根據 20ODFL 20 數據解動變變變變變變數, 根據化為 數據機動動動動動動動動動動動作 、 數據數據化機機路路路路路路、 數化數化數數數數數數數、 數化數數數數數化機化數據機路路路路路路路、數、數、數、數效變化機化機化數、數學路路路路運化路路路路路路路運化路路路、數路、數、數化數化數路路路運化路路路、數路路路路路路路路路路路路路路路路路路、數、數路路路路路路路路路路路路路路路路路路路路路、數、數、數、數路路路路路路路路路路路路路路路路路路運運化路路路路路路運運運運運運運運路路路路路、數路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路、數

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
44+阅读 · 2022年9月6日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
44+阅读 · 2022年9月6日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
18+阅读 · 2020年10月9日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员