We prove sharp bounds on certain impedance-to-impedance maps (and their compositions) for the Helmholtz equation with large wavenumber (i.e., at high-frequency) using semiclassical defect measures. The paper [GGGLS] (Gong-Gander-Graham-Lafontaine-Spence, 2022) recently showed that the behaviour of these impedance-to-impedance maps (and their compositions) dictates the convergence of the parallel overlapping Schwarz domain-decomposition method with impedance boundary conditions on the subdomain boundaries. For a model decomposition with two subdomains and sufficiently-large overlap, the results of this paper combined with those in [GGGLS] show that the parallel Schwarz method is power contractive, independent of the wavenumber. For strip-type decompositions with many subdomains, the results of this paper show that the composite impedance-to-impedance maps, in general, behave "badly" with respect to the wavenumber; nevertheless, by proving results about the composite maps applied to a restricted class of data, we give insight into the wavenumber-robustness of the parallel Schwarz method observed in the numerical experiments in [GGGLS].


翻译:在使用半古典缺陷测量法的Helmholtz方程式中,我们用半古典缺陷测量法[GGGLS](Gong-Gander-Graham-Lafontaine-Spence,2022年)对某些阻阻阻至阻塞的地图(及其构成)进行了严格的界限。 论文(GGGLS)](Gong-Gander-Graham-Lafontaine-Spence,2022年)最近显示,这些阻阻力到阻塞地图(及其构成)的行为决定了Schwarz域间平行重叠的阻塞方法与子域边界的阻塞条件的结合。对于两个子域和足够大重叠的模型的分解,该文件的结果与[GGGGLS]中的结果表明,平行的Swarz方法具有权力收缩性,与波数无关。对于许多子域的脱钩式地图(及其组成),其结果显示,总而言,阻碍到的复合阻扰动地图与波数的“行为”;然而,通过证明综合地图的结果,我们所观察到的SGGLS-LS的平行数据序列中的数值的精确度,使我们进入了数字的数值的数值的数值。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月31日
Arxiv
0+阅读 · 2023年1月30日
Arxiv
0+阅读 · 2023年1月28日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员