We consider the problem of computing the \emph{distance-based representative skyline} in the plane, a problem introduced by Tao, Ding, Lin and Pei [Proc. 25th IEEE International Conference on Data Engineering (ICDE), 2009] and independently considered by Dupin, Nielsen and Talbi [Optimization and Learning - Third International Conference, OLA 2020] in the context of multi-objective optimization. Given a set $P$ of $n$ points in the plane and a parameter $k$, the task is to select $k$ points of the skyline defined by $P$ (also known as Pareto front for $P$) to minimize the maximum distance from the points of the skyline to the selected points. We show that the problem can be solved in $O(n\log h)$ time, where $h$ is the number of points in the skyline of $P$. We also show that the decision problem can be solved in $O(n\log k)$ time and the optimization problem can be solved in $O(n \log k + n \operatorname{loglog} n)$ time. This improves previous algorithms and is optimal for a large range of values of $k$.
翻译:我们考虑了在飞机上计算 emph{ 以距离为基础的有代表性的天空线的问题,这是由Tao、Ding、Lin和Pei[Proc. 25 IEEEE 国际数据工程会议(ICDE,2009年)提出的一个问题,由Dupin、Nielsen和Talbi[Opimimation and Learning - Learning - Learning, 第三次国际会议, OLA 2020]在多目标优化背景下独立审议。考虑到飞机上设定的美元点为美元,而参数为美元,我们的任务是选择由美元(P$)(又称为P$P$的Pereto前端)定义的天线点的美元点,以最大限度地减少从天线点到选定点的最大距离。我们表明,问题可以用美元(n\log h) 时间来解决,其中美元是美元线上的点数。我们还表明,决定问题可以用美元(nlog k) 时间和优化问题可以用美元解决,而优化问题可以用美元(nlog$) 来解决。