In an influential critique of empirical practice, Freedman \cite{freedman2008A,freedman2008B} showed that the linear regression estimator was biased for the analysis of randomized controlled trials under the randomization model. Under Freedman's assumptions, we derive exact closed-form bias corrections for the linear regression estimator with and without treatment-by-covariate interactions. We show that the limiting distribution of the bias corrected estimator is identical to the uncorrected estimator, implying that the asymptotic gains from adjustment can be attained without introducing any risk of bias. Taken together with results from Lin \cite{lin2013agnostic}, our results show that Freedman's theoretical arguments against the use of regression adjustment can be completely resolved with minor modifications to practice.


翻译:Freedman\cite{freedman2008A,freedman2008B}在对经验实践的有影响力的批评中,Freedman \cite{fredman2008A,freedman2008B}显示线性回归估计值偏向于随机化模式下的随机控制试验分析。根据Freedman的假设,我们对有和没有逐项处理互动的线性回归估计值进行严格的封闭式偏向修正。我们显示,纠正的偏向估计值的有限分布与未纠正的估测值相同,这意味着调整的无保障收益可以在不引入偏差风险的情况下实现。我们的结果与Lin\cite{lin2013nonestic}的结果一起表明,Freedman反对使用回归调整的理论论点可以通过对实践稍作修改而完全解决。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
64+阅读 · 2020年12月11日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
55+阅读 · 2020年2月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
90+阅读 · 2021年6月29日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
64+阅读 · 2020年12月11日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
55+阅读 · 2020年2月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员