In an influential critique of empirical practice, Freedman \cite{freedman2008A,freedman2008B} showed that the linear regression estimator was biased for the analysis of randomized controlled trials under the randomization model. Under Freedman's assumptions, we derive exact closed-form bias corrections for the linear regression estimator with and without treatment-by-covariate interactions. We show that the limiting distribution of the bias corrected estimator is identical to the uncorrected estimator, implying that the asymptotic gains from adjustment can be attained without introducing any risk of bias. Taken together with results from Lin \cite{lin2013agnostic}, our results show that Freedman's theoretical arguments against the use of regression adjustment can be completely resolved with minor modifications to practice.
翻译:Freedman\cite{freedman2008A,freedman2008B}在对经验实践的有影响力的批评中,Freedman \cite{fredman2008A,freedman2008B}显示线性回归估计值偏向于随机化模式下的随机控制试验分析。根据Freedman的假设,我们对有和没有逐项处理互动的线性回归估计值进行严格的封闭式偏向修正。我们显示,纠正的偏向估计值的有限分布与未纠正的估测值相同,这意味着调整的无保障收益可以在不引入偏差风险的情况下实现。我们的结果与Lin\cite{lin2013nonestic}的结果一起表明,Freedman反对使用回归调整的理论论点可以通过对实践稍作修改而完全解决。