We present a new uncertainty principle for risk-aware statistical estimation, effectively quantifying the inherent trade-off between mean squared error ($\mse$) and risk, the latter measured by the associated average predictive squared error variance ($\sev$), for every admissible estimator of choice. Our uncertainty principle has a familiar form and resembles fundamental and classical results arising in several other areas, such as the Heisenberg principle in statistical and quantum mechanics, and the Gabor limit (time-scale trade-offs) in harmonic analysis. In particular, we prove that, provided a joint generative model of states and observables, the product between $\mse$ and $\sev$ is bounded from below by a computable model-dependent constant, which is explicitly related to the Pareto frontier of a recently studied $\sev$-constrained minimum $\mse$ (MMSE) estimation problem. Further, we show that the aforementioned constant is inherently connected to an intuitive new and rigorously topologically grounded statistical measure of distribution skewness in multiple dimensions, consistent with Pearson's moment coefficient of skewness for variables on the line. Our results are also illustrated via numerical simulations.


翻译:我们为风险意识统计估算提出了一个新的不确定性原则,有效地量化了平均正方差(mse$)和风险之间的内在权衡,而风险则以相应的平均预测平差差差(sev$)来衡量。我们的不确定性原则具有一种熟悉的形式,类似于其他一些领域产生的基本和经典结果,如海森堡在统计和量子力学方面的原则,加博尔限度(时间尺度权衡)在口音分析方面。特别是,我们证明,如果有国家和可观测数据的联合基因模型,则美元和美元之间的产品与以下各值之间由一个基于可折算模型的常数(sev$)约束,这显然与最近研究过的帕雷托边界(美元)统计和量子力(MMSE)估算问题中受限制的最低美元(MMSE)问题有关。此外,我们证明,上述常数与一个直观和严格基于表面的统计尺度测量多维度分布度的统计模型,也与Pearson的模型常数相联,这与我们模拟时的数值变量也与Searson的数值系数一致。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【硬核书】树与网络上的概率,716页pdf
专知会员服务
71+阅读 · 2021年12月8日
【2020新书】Python文本分析,104页pdf
专知会员服务
98+阅读 · 2020年12月23日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月14日
Arxiv
18+阅读 · 2021年3月16日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
71+阅读 · 2021年12月8日
【2020新书】Python文本分析,104页pdf
专知会员服务
98+阅读 · 2020年12月23日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员