The Travelling Salesman Problem (TSP), finding a minimal weighted Hamilton cycle in a graph, is a typical problem in operation research and combinatorial optimization. In this paper, based on some novel properties on Hamilton graphs, we present a precise algorithm for finding a minimal weighted Hamilton cycle in a non-metric and symmetric graph with time complexity of \textit{O}(|E(G)|^3) , where |E(G)| is the size of graph G.
翻译:旅行推销员问题(TSP)在图表中找到一个最小加权的汉密尔顿周期,这是业务研究和组合优化的一个典型问题。 本文根据汉密尔顿图表的一些新特点,提出了一个精确的算法,用于在非计量和对称图中找到一个最小加权的汉密尔顿周期,该图的时间复杂性为\ textit{O}( ⁇ E(G) ⁇ 3),其中 ⁇ E(G) ⁇ 是图形G的大小。