We develop an asymptotic theory for extremes in decomposable graphical models by presenting results applicable to a range of extremal dependence types. Specifically, we investigate the weak limit of the distribution of suitably normalised random vectors, conditioning on an extreme component, where the conditional independence relationships of the random vector are described by a chordal graph. Under mild assumptions, the random vector corresponding to the distribution in the weak limit, termed the tail graphical model, inherits the graphical structure of the original chordal graph. Our theory is applicable to a wide range of decomposable graphical models including asymptotically dependent and asymptotically independent graphical models. Additionally, we analyze combinations of copula classes with differing extremal dependence in cases where a normalization in terms of the conditioning variable is not guaranteed by our assumptions. We show that, in a block graph, the distribution of the random vector normalized in terms of the random variables associated with the separators converges weakly to a distribution we term tail noise. In particular, we investigate the limit of the normalized random vectors where the clique distributions belong to two widely used copula classes, the Gaussian copula and the max-stable copula.
翻译:我们通过展示适用于一系列极端依赖性类型的结果,为不折不扣的图形模型中的极端开发一种无症状理论。 具体地说, 我们调查适当正常的随机矢量分布的微弱限制, 以极端组件为条件, 随机矢量的有条件独立关系由chordal 图形描述。 在轻度假设下, 与弱度极限分布相对应的随机矢量, 称为尾形图形模型, 继承原圆形图形的图形结构。 我们的理论适用于一系列可折叠的可折叠图形模型, 包括无症状依赖性和无症状独立性图形模型。 此外, 我们分析在调节变量的正常化得不到我们假设的保障的情况下, 以不同极端依赖性为主的相类相混合。 我们显示, 在块图中, 随机矢量的分布在与静态相联的随机变量中, 以微弱的方式与分布相交汇。 我们用尾色噪音来定义。 我们特别要调查正常的随机矢量矢量矢量矢量的极限, 即焦量分布为最常用的两个焦质类别。