Graph Anomaly Detection (GAD) has recently become a hot research spot due to its practicability and theoretical value. Since GAD emphasizes the application and the rarity of anomalous samples, enriching the varieties of its datasets is a fundamental work. Thus, this paper present DGraph, a real-world dynamic graph in the finance domain. DGraph overcomes many limitations of current GAD datasets. It contains about 3M nodes, 4M dynamic edges, and 1M ground-truth nodes. We provide a comprehensive observation of DGraph, revealing that anomalous nodes and normal nodes generally have different structures, neighbor distribution, and temporal dynamics. Moreover, it suggests that those unlabeled nodes are also essential for detecting fraudsters. Furthermore, we conduct extensive experiments on DGraph. Observation and experiments demonstrate that DGraph is propulsive to advance GAD research and enable in-depth exploration of anomalous nodes.
翻译:异常图解(GAD)最近因其实用性和理论价值而成为热研究点。 GAD强调异常样本的应用和罕见性,丰富其数据集的种类是一项基本工作。 因此,本文展示了金融领域真实世界动态图DGraph。 DGraph克服了当前GAD数据集的许多局限性。 它包含大约3M节点、 4M 动态边缘和 1M 地面真相节点。 我们对DGraph 进行了全面观察,揭示异常节点和正常节点通常有不同的结构、 邻居分布和时间动态。 此外,它表明这些未标出的节点对于侦查欺诈者也是必不可少的。此外,我们在DGraph 上进行了广泛的实验。观察和实验表明DGraph 有利于推进GAD研究,并且能够深入探索异常节点。