We introduce difference estimators for data stream computation, which provide approximations to $F(v)-F(u)$ for frequency vectors $v\succeq u$ and a given function $F$. We show how to use such estimators to carefully trade error for memory in an iterative manner. The function $F$ is generally non-linear, and we give the first difference estimators for the frequency moments $F_p$ for $p\in[0,2]$, as well as for integers $p>2$. Using these, we resolve a number of central open questions in adversarial robust streaming and sliding window models. For adversarially robust streams, we obtain a $(1+\epsilon)$-approximation to $F_p$ using $\tilde{\mathcal{O}}\left(\frac{\log n}{\epsilon^2}\right)$ bits of space for $p\in[0,2]$ and using $\tilde{\mathcal{O}}\left(\frac{1}{\epsilon^2}n^{1-2/p}\right)$ bits of space for integers $p>2$. We also obtain an adversarially robust algorithm for the $L_2$-heavy hitters problem using $\tilde{\mathcal{O}}\left(\frac{\log n}{\epsilon^2}\right)$ bits of space. Our bounds are optimal up to $\text{poly}(\log\log n+\log(1/\epsilon))$ factors, and improve the $\frac{1}{\epsilon^3}$ dependence of Ben-Eliezer et al. (PODS 2020, best paper award) and the $\frac{1}{\epsilon^{2.5}}$ dependence of Hassidim et al. (NeurIPS 2020, oral presentation). For sliding windows, we obtain a $(1+\epsilon)$-approximation to $F_p$ for $p\in(0,2]$, resolving a longstanding question of Braverman and Ostrovsky (FOCS 2007). For example, for $p = 2$ we improve the dependence on $\epsilon$ from $\frac{1}{\epsilon^4}$ to an optimal $\frac{1}{\epsilon^2}$. For both models, our dependence on $\epsilon$ shows, up to $\log\frac{1}{\epsilon}$ factors, that there is no overhead over the standard insertion-only data stream model for any of these problems.


翻译:我们引入了用于数据流计算的差异估测器, 提供频率矢量$F(v){F3}F(u)$(美元)的近似值, 以美元( 美元) 美元( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( 美元) =( =( 美元) =( 美元) =( 美元) =( =( 美元) =( 美元) =( 美元) =( 美元) 美元) =( 美元) =( =( 美元) 美元) =( =( 美元) =( 美元) 美元) 美元) =( =( 美元) 美元) =( 美元) =( =( 美元) 美元) =( 美元) =( =( =( 美元) =( 美元) 美元) =( =( =( =( ) =( =( =)) ) =( 美元)

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
67+阅读 · 2020年4月7日
专知会员服务
159+阅读 · 2020年1月16日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
GitHub 热门:别再用 print 输出来调试代码了
Python开发者
27+阅读 · 2019年4月24日
Windows 提权-快速查找 Exp
黑白之道
3+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
67+阅读 · 2020年4月7日
专知会员服务
159+阅读 · 2020年1月16日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
GitHub 热门:别再用 print 输出来调试代码了
Python开发者
27+阅读 · 2019年4月24日
Windows 提权-快速查找 Exp
黑白之道
3+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员