Investigations concerned with anti-unification (AU) over $\lambda$-terms have focused on developing algorithms that produce generalizations residing within well-studied fragments of the simply-typed $\lambda$-calculus. These fragments forbid the nesting of generalizations variables, restrict the structure of their arguments, and are \textit{unitary}. We consider the case of nested generalization variables and show that this AU problem is \textit{nullary}, even when the arguments to free variables are severely restricted.
翻译:有关反统一(AU)超过$\lambda$-terms)的调查侧重于开发一些算法,这些算法在简单型的$@lambda$-calululus 中产生一般化。这些算法禁止一般化变量嵌套,限制其论点的结构,并且是\ textit{ 统一}。我们考虑了嵌套式一般化变量的例子,并表明这个AU的问题是\ textit{nullary},即使自由变量的论据受到严格限制。