This paper proposes a novel message passing neural (MPN) architecture Conv-MPN, which reconstructs an outdoor building as a planar graph from a single RGB image. Conv-MPN is specifically designed for cases where nodes of a graph have explicit spatial embedding. In our problem, nodes correspond to building edges in an image. Conv-MPN is different from MPN in that 1) the feature associated with a node is represented as a feature volume instead of a 1D vector; and 2) convolutions encode messages instead of fully connected layers. Conv-MPN learns to select a true subset of nodes (i.e., building edges) to reconstruct a building planar graph. Our qualitative and quantitative evaluations over 2,000 buildings show that Conv-MPN makes significant improvements over the existing fully neural solutions. We believe that the paper has a potential to open a new line of graph neural network research for structured geometry reconstruction.
翻译:本文建议使用新颖的信息传递神经(MPN)结构Conv-MPN, 该结构将户外建筑重建为一张RGB图像中的平面图。 Conv- MPN 专门设计用于图形节点具有明显空间嵌入的案例中。 在我们的问题中, 节点相当于图像中的建筑边缘。 Conv- MPN 与 MPN 不同, 1) 与节点相关的特征是一个特征音量, 而不是1D矢量; 2) 将信息编码化, 而不是完全连接的层。 Conv- MPN 学会选择一个真正的节点子子子( 即建筑边缘) 来重建建筑平面图。 我们的2,000多座建筑质量和数量评估显示, Conv- MPN 大大改进了现有的完全神经解决方案。 我们相信, 该文件有可能为结构几何测量重建打开一条新的图形神经网络研究线。