Human motion prediction is key to understand social environments, with direct applications in robotics, surveillance, etc. We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments conditioned by the environment: map and surround agents. Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion, allowing to capture the important features in the environment that improve prediction. We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models, which makes our approach easily extendable and configurable, depending on the data available. We report results performing similarly with SoTA models on publicly available and extensible-used datasets with unimodal prediction metrics ADE and FDE.
翻译:人类运动预测是了解社会环境的关键,在机器人、监视等中直接应用。 我们展示了一个简单而有效的行人轨迹预测模型,目的是在受环境制约的类似城市环境中对行人的位置进行预测:地图和环形物剂。我们的模型是一个基于神经的结构,可以连续地以迭接的方式运行几个层次的注意区块和变压器,从而能够捕捉环境中的重要特征,从而改善预测。我们显示,如果不明确引入社会面具、动态模型、社会集合层或复杂的图形结构,就有可能与 SoTA模型产生相同的结果,这使我们的方法能够根据现有数据容易推广和可配置。我们报告的结果与SOTA模型在公开提供和可推广的数据集方面进行类似,同时使用单式预测ADE和FDE指标。