Artistic pieces can be studied from several perspectives, one example being their reception among readers over time. In the present work, we approach this interesting topic from the standpoint of literary works, particularly assessing the task of predicting whether a book will become a best seller. Dissimilarly from previous approaches, we focused on the full content of books and considered visualization and classification tasks. We employed visualization for the preliminary exploration of the data structure and properties, involving SemAxis and linear discriminant analyses. Then, to obtain quantitative and more objective results, we employed various classifiers. Such approaches were used along with a dataset containing (i) books published from 1895 to 1924 and consecrated as best sellers by the \emph{Publishers Weekly Bestseller Lists} and (ii) literary works published in the same period but not being mentioned in that list. Our comparison of methods revealed that the best-achieved result - combining a bag-of-words representation with a logistic regression classifier - led to an average accuracy of 0.75 both for the leave-one-out and 10-fold cross-validations. Such an outcome suggests that it is unfeasible to predict the success of books with high accuracy using only the full content of the texts. Nevertheless, our findings provide insights into the factors leading to the relative success of a literary work.
翻译:可以从几个角度研究艺术作品,其中一个例子是读者在一段时间内会收到这些作品。在目前的工作中,我们从文学作品的角度来研究这个有趣的主题,特别是评估预测一本书是否将成为最佳销售商的任务。与以前的做法不同,我们侧重于书籍的全部内容以及考虑的可视化和分类任务。我们利用视觉来初步探索数据结构和属性,包括SemAxis和线性分析。然后,为了获得数量和更客观的结果,我们使用了各种分类者。这些方法与包含以下内容的数据集一起使用:(一) 1895年至1924年出版的书籍,并被“emph{Publishers周刊最佳销售者名单” 评为最佳销售商;(二) 在同一期间出版的文学作品,但没有在这份清单中提及。我们对方法的比较表明,最佳成果——将一袋语言代表与物流回归分类者相结合——导致平均精确度为0.75,两者都包含185至1924年出版的书籍,并被“最佳销售者周刊”《最佳销售者周刊名录》 和“文学作品的准确性结果,因此只能预测成功。这种结果只能用来预测到文献的完整的准确性结果。