Empowered by deep neural networks (DNNs), Wi-Fi fingerprinting has recently achieved astonishing localization performance to facilitate many security-critical applications in wireless networks, but it is inevitably exposed to adversarial attacks, where subtle perturbations can mislead DNNs to wrong predictions. Such vulnerability provides new security breaches to malicious devices for hampering wireless network security, such as malfunctioning geofencing or asset management. The prior adversarial attack on localization DNNs uses additive perturbations on channel state information (CSI) measurements, which is impractical in Wi-Fi transmissions. To transcend this limitation, this paper presents FooLoc, which fools Wi-Fi CSI fingerprinting DNNs over the realistic wireless channel between the attacker and the victim access point (AP). We observe that though uplink CSIs are unknown to the attacker, the accessible downlink CSIs could be their reasonable substitutes at the same spot. We thoroughly investigate the multiplicative and repetitive properties of over-the-air perturbations and devise an efficient optimization problem to generate imperceptible yet robust adversarial perturbations. We implement FooLoc using commercial Wi-Fi APs and Wireless Open-Access Research Platform (WARP) v3 boards in offline and online experiments, respectively. The experimental results show that FooLoc achieves overall attack success rates of about 70% in targeted attacks and of above 90% in untargeted attacks with small perturbation-to-signal ratios of about -18dB.
翻译:由深层神经网络(DNNS)授权的无线-Fi指纹(Wi-Fi)最近取得了惊人的本地化性能,以便利无线网络的许多安全关键应用,但它不可避免地暴露在对抗性攻击中,微妙的扰动会误导DNNS错误的预测。这种脆弱性为恶意装置提供了新的安全漏洞,以妨碍无线网络安全,如地视功能失灵或资产管理。之前对本地化 DNS的对抗性攻击使用了频道国家信息(CSI)测量的叠加性和重复性特征,这在无线-Fi传输中是不切实际的。为了超越这一限制,本文介绍了FooLoc在攻击者与受害者接入点(AP)之间现实的无线无线频道上为Wi-Fi CSI指印DNNS指纹。我们观察到,虽然攻击者不知道CSI的上行联,但在同一地点可以合理取代CSI的下链接。我们彻底调查了频道国家信息的过度侵入和重复性比率,并设计了高效的优化问题,以便产生不可辨测视的、但坚固的、断的对准的反面的对称的对称,在目标攻击上,我们用FAFOFI-LI-FI-FI-FA的实验的实验,分别在了整个的实验平台上分别进行FA-FA-FA-FA-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-A-I-A-I-I-I-I-I-FAL-I-I-I-I-I-F-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-T-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-A-I-I-I-I-I-I-I-I-I-I-I-I-A-A-I-I-I-I-I-A-I-I-I-I-I-I-