Multi-Modal Self-Supervised Learning from videos has been shown to improve model's performance on various downstream tasks. However, such Self-Supervised pre-training requires large batch sizes and a large amount of computation resources due to the noise present in the uncurated data. This is partly due to the fact that the prevalent training scheme is trained on coarse-grained setting, in which vectors representing the whole video clips or natural language sentences are used for computing similarity. Such scheme makes training noisy as part of the video clips can be totally not correlated with the other-modality input such as text description. In this paper, we propose a fine-grained multi-modal self-supervised training scheme that computes the similarity between embeddings at finer-scale (such as individual feature map embeddings and embeddings of phrases), and uses attention mechanisms to reduce noisy pairs' weighting in the loss function. We show that with the proposed pre-training scheme, we can train smaller models, with smaller batch-size and much less computational resources to achieve downstream tasks performances comparable to State-Of-The-Art, for tasks including action recognition and text-image retrievals.


翻译:从视频中看到多式自动操作学习,这显示是为了改进模型在各种下游任务方面的表现。然而,这种自我操作前培训需要大量批量规模和大量计算资源,因为未加工数据中存在噪音。部分原因是,普遍存在的培训计划是按粗皮设置培训的,代表整个视频片段或自然语言句的矢量用于计算相似性。这种计划使培训成为视频片段的一部分,使培训变得吵闹,与文本描述等其他现代投入完全不相关。在本文中,我们提出一个精细的多式多式自我监督培训计划,该培训计划将精细的嵌入精细尺寸(如个人特征图嵌入和短语嵌入)之间的相似性进行计算,并利用关注机制减少损失功能中的杂音配对的权重。我们证明,根据拟议的培训前计划,我们可以培训较小的模型,小批量和小得多的计算资源,以达到下游任务,包括可与国家可比较的动作。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
14+阅读 · 2021年8月5日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员