We provide a complete picture of asymptotically minimax estimation of $L_r$-norms (for any $r\ge 1$) of the mean in Gaussian white noise model over Nikolskii-Besov spaces. In this regard, we complement the work of Lepski, Nemirovski and Spokoiny (1999), who considered the cases of $r=1$ (with poly-logarithmic gap between upper and lower bounds) and $r$ even (with asymptotically sharp upper and lower bounds) over H\"{o}lder spaces. We additionally consider the case of asymptotically adaptive minimax estimation and demonstrate a difference between even and non-even $r$ in terms of an investigator's ability to produce asymptotically adaptive minimax estimators without paying a penalty.
翻译:我们提供了高山白色噪音模型在Nikolskii-Besov空间上的平均值(任何1美元)的微量估计值的完整图象,在这方面,我们补充了Lepski、Nemirovski和Spokoiny(1999年)的工作,他们审议了1美元(上下界限之间多孔差)和1美元(上下界限上下界线上和下界限上)在H\{{{o}lder 空间上的平均值。我们进一步考虑了无孔不入的适应性小型马克思模型的情况,并表明在调查人员在不支付罚款的情况下产生无间歇性适应性微型马克思估计器的能力方面,偶而非偶而有差异。