System identification is of special interest in science and engineering. This article is concerned with a system identification problem arising in stochastic dynamic systems, where the aim is to estimating the parameters of a system along with its unknown noise processes. In particular, we propose a Bayesian nonparametric approach for system identification in discrete time nonlinear random dynamical systems assuming only the order of the Markov process is known. The proposed method replaces the assumption of Gaussian distributed error components with a highly flexible family of probability density functions based on Bayesian nonparametric priors. Additionally, the functional form of the system is estimated by leveraging Bayesian neural networks which also leads to flexible uncertainty quantification. Asymptotically on the number of hidden neurons, the proposed model converges to full nonparametric Bayesian regression model. A Gibbs sampler for posterior inference is proposed and its effectiveness is illustrated in simulated and real time series.


翻译:本条涉及在随机动态系统中出现的系统识别问题,目的是估计一个系统的参数及其未知的噪音过程;特别是,我们提议在离散时间的非线性随机动态系统中采用巴伊西亚非参数性系统识别系统非参数性方法,假设只有Markov过程的顺序为人所知;拟议方法以基于Bayesian非参数前科的高度灵活的概率密度函数组合取代Gaussian分布式错误元件的假设;此外,该系统的功能形式是通过利用Bayesian神经网络来估计的,这也导致灵活的不确定性量化;就隐性神经元的数量而言,拟议的模型与完全的非参数性巴伊西亚回归模型相交汇;提议了一个用于后方推断的Gibbs取样器,并在模拟和实际时间序列中展示其有效性。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
自动结构变分推理,Automatic structured variational inference
专知会员服务
39+阅读 · 2020年2月10日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年4月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
NLP 专题论文解读:从 Chatbot 到 NER | PaperDaily #11
PaperWeekly
5+阅读 · 2017年11月8日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年4月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
NLP 专题论文解读:从 Chatbot 到 NER | PaperDaily #11
PaperWeekly
5+阅读 · 2017年11月8日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员