The following paper proposes a new approach to determine whether a logical (CNF) formula is satisfiable or not using probability theory methods. Furthermore, we will introduce an algorithm that speeds up the standard solution for (CNF-SAT) in some cases. It is known that any (CNF) formula is solved with a time complexity of $2^n$ where n is the number of different literals in the (CNF) formula. In our approach, we will follow an enhanced method from a probabilistic point of view that does not always increase exponentially with the number of different literals. This will enhance the chance of determining whether a large formula is satisfiable or not in many cases. Additionally, we will point out at some promising properties that follow from applying probability theory concepts and axioms to logic, which might originate more insights about the satisfiability of logical formulas.
翻译:下面的论文提出了一种新的方法,以确定逻辑(CNF)公式是否可比较,或者不使用概率理论方法。此外,我们将引入一种算法,在某些情况下加快(CNF-SAT)的标准解决方案。已知任何(CNF)公式的解答时间复杂度为2美元,其中n是(CNF)公式中不同字数的。在我们的方法中,我们将从概率角度采用一种强化的方法,这种方法不会随着不同字数的增多而成倍增加。这将增加确定一个大公式是否可比较的可能性。此外,我们将指出从应用概率理论概念和逻辑的轴数到逻辑的一些有希望的属性,这些属性可能会对逻辑公式的可比较性产生更多洞察力。