MapReduce (MR) model algorithms for maximizing monotone, submodular functions subject to a cardinality constraint (SMCC) are currently restricted to the use of the linear-adaptive (non-parallelizable) algorithm GREEDY. Low-adaptive algorithms do not satisfy the requirements of these distributed MR frameworks, thereby limiting their performance. We study the SMCC problem in a distributed setting and propose the first MR algorithms with sublinear adaptive complexity. Our algorithms, R-DASH, T-DASH and G-DASH provide ($0.316-\varepsilon$), ($0.375-\varepsilon$) and ($0.632-\varepsilon$) approximation ratio respectively with near-optimal adaptive complexity. Additionally, we provide a memory-efficient framework MED that eliminates the memory limitations of all MR model algorithms resulting from large distributed setups or considerable cardinality constraints. Finally, we provide empirical evidence to demonstrate that our sublinear-adaptive distributed algorithms provide orders of magnitude faster speedup in runtime compared to current state-of-the-art distributed algorithms while producing near identical results.
翻译:最大单调、受基本限制(SMCC)限制的亚调制函数(SMCC)目前仅限于使用线性适应(非平行)算法GREEDY。低调调算法不能满足这些分布式MR框架的要求,从而限制其性能。我们在分布式设置中研究员工和管理当局协调问题,并提出具有亚线性适应复杂性的第一份MR算法。我们的算法、R-DASH、T-DASH和G-DASH分别提供0.316\varepsilon$、0.375\varepsilon$和0.632-\varepsilon$)和接近最佳适应性复杂度的线性调整比。此外,我们提供了一个记忆效率框架MED,消除了由于大规模分布式设置或相当的基度限制而产生的所有MRMLS模型算法的记忆限制。最后,我们提供了经验性证据,以证明我们的子线性调整式分配算法在运行期间提供了速度速度的幅度,而与近于目前相同的分布式算结果。