Unsupervised mixture learning (UML) aims at identifying linearly or nonlinearly mixed latent components in a blind manner. UML is known to be challenging: Even learning linear mixtures requires highly nontrivial analytical tools, e.g., independent component analysis or nonnegative matrix factorization. In this work, the post-nonlinear (PNL) mixture model -- where unknown element-wise nonlinear functions are imposed onto a linear mixture -- is revisited. The PNL model is widely employed in different fields ranging from brain signal classification, speech separation, remote sensing, to causal discovery. To identify and remove the unknown nonlinear functions, existing works often assume different properties on the latent components (e.g., statistical independence or probability-simplex structures). This work shows that under a carefully designed UML criterion, the existence of a nontrivial null space associated with the underlying mixing system suffices to guarantee identification/removal of the unknown nonlinearity. Compared to prior works, our finding largely relaxes the conditions of attaining PNL identifiability, and thus may benefit applications where no strong structural information on the latent components is known. A finite-sample analysis is offered to characterize the performance of the proposed approach under realistic settings. To implement the proposed learning criterion, a block coordinate descent algorithm is proposed. A series of numerical experiments corroborate our theoretical claims.
翻译:无监督的混合物学习(UML)旨在盲目地确定线性或非线性混合潜在组成部分。UML已知具有挑战性:即使学习线性混合物也需要高度非三边分析工具,例如独立部件分析或非阴性矩阵因子化。在这项工作中,对非线性(PNL)混合物模型 -- -- 该模型将未知的元素-不线性非线性功能强加给线性混合物 -- -- 进行了重新研究。PNL模型广泛用于不同领域,从大脑信号分类、语音分解、遥感到因果发现等不同领域。为了查明和消除未知的非线性功能,现有的工程往往在潜在组成部分(如统计独立性或概率-简单结构结构)上具有不同的特性。这项工作表明,根据精心设计的UML标准,与基本混合系统相关的非边际无端无端无线性功能的混合模式的存在足以保证识别/消除未知非线性。与先前的工作相比,我们发现PNL可识别性的条件大为宽松,因此,如果在没有强有力的结构性分析的情况下,现有工作在潜在组成部分结构分析中,则可能有利于应用这些应用,根据已知的理论性标准进行我们的拟议的标准性分析。