Deep neural networks (DNNs) allow digital receivers to learn to operate in complex environments. To do so, DNNs should preferably be trained using large labeled data sets with a similar statistical relationship as the one under which they are to infer. For DNN-aided receivers, obtaining labeled data conventionally involves pilot signalling at the cost of reduced spectral efficiency, typically resulting in access to limited data sets. In this paper, we study how one can enrich a small set of labeled pilots data into a larger data set for training deep receivers. Motivated by the widespread use of data augmentation techniques for enriching visual and text data, we propose dedicated augmentation schemes that exploits the characteristics of digital communication data. We identify the key considerations in data augmentations for deep receivers as the need for domain orientation, class (constellation) diversity, and low complexity. Following these guidelines, we devise three complementing augmentations that exploit the geometric properties of digital constellations. Our combined augmentation approach builds on the merits of these different augmentations to synthesize reliable data from a momentary channel distribution, to be used for training deep receivers. Furthermore, we exploit previous channel realizations to increase the reliability of the augmented samples.


翻译:深神经网络(DNNs) 使数字接收器能够学习如何在复杂环境中操作。 为此,DNNs最好最好接受使用大标签数据集的培训,这些数据集与它们据以推断的数据集具有类似的统计关系。对于DNN 辅助接收器来说,获得标签数据通常涉及试点信号,以降低光谱效率为代价,通常导致访问有限的数据集。在本文件中,我们研究如何将一小组标签的试点数据丰富成一个用于培训深接收器的更大型数据集。我们受广泛使用数据增强技术来丰富视觉和文本数据的影响,我们建议采用利用数字通信数据特性的专用增强计划。我们确定深度接收器数据增强中的关键考虑因素是需要域定向、等级(相近)多样性和低复杂性。我们根据这些准则设计了三个补充增强功能,利用数字星座的几何特性。我们的综合增强方法以这些不同增强功能的优点为基础,综合了从瞬间信道分布到可靠数据的可靠数据,用于培训深度接收器。此外,我们利用先前的频率增强了以前实现的可靠性。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
59+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月18日
A Survey on Data Augmentation for Text Classification
Arxiv
38+阅读 · 2020年12月2日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员